

Introduction

Objective:

✓ To analyze kickback voltage on relay, derive working equations and perform simulation

Topics:

- Model Circuit
- Analysis During ON Time
- Analysis During OFF Time
- Deriving the Maximum **Δ**I
- Deriving the **⊿**t
- Solving the Coil Voltage and VDS
- Simulations
- Reviewing What We Have Learned

Introduction

 ✓ Relays are commonly use to drive a high current load from a low voltage low current signal such as signals coming from MCU, DSC, DSP and other digital circuits

✓ Relay drivers are devices that drive the relay coil to change its contact state

✓ Relay driver is can be a MOSFET, BJT or opto-coupler

Model Circuit

Analysis During ON Time

✓ When Q1 is ON, the current will flow from VBAT to the coil then to Q1 and return to the ground

✓ The current will flow as shown in the arrow direction

✓ During this time the upper side of the coil is positive while the lower side has negative sign

✓ During this time also, the VDS is approximately zero

Analysis During OFF Time

 ✓ When Q1 is OFF, there is a sudden change in the circuit current. However, the coil will not let it to happen immediately. It will maintain the current direction momentarily by reversing its polarity.

✓ During this time the upper side of the coil has negative sign while the lower side is positive

VBAT + VCOIL - VDS = 0

VDS = VBAT + VCOIL

3

Analysis During OFF Time

✓ From equation 3, the VDS which is the voltage seen by the MOSFET is the sum of VBAT and the coil voltage.

Deriving the Maximum *D*i

✓ ▲i is final current minus initial current. Final current would be zero and the initial current is the running current.

 ✓ Do not be confused if the **∆**i is negative. A negative sign just means that the inductor reverses its polarity

The maximum value is can be neglecting the drop of the line

 Δ i is final cu12V/68 Ω) – 0A = 0.176 A Irrent. Final

Deriving the At

✓ From the coil voltage equation, it is easy to tell that the maximum level is happening at the maximum change in current

✓ Figure in the left is a simulated VDS and coil current. When the current (in blue) is at the zero level, the VDS (in pink) is at its peak level.

✓ The **∆**t is measured from the moment the coil current starts to decay until 0A wherein the VDS is at the peak level

Solving the Coil Voltage and VDS

Simulations

Reviewing What We Have Learned

✓ Inductive kickback on relay is can be computed using simple circuit analysis

 \checkmark The challenging part is how to get the change in time or ${\it \Delta} t$

 $\checkmark \Delta$ t is can be solved by studying the resonance of the coil inductance and the output capacitance of the MOSFET

✓ The change in time is measured from the moment the inductor current starts to decrease up to the time where the VDS is at its peak level

 $\checkmark \Delta$ t is just ¼ of the period of the oscillation of the coil inductance and the output capacitance

Reference:

http://electronicsbeliever.com/?s=relay+kickback+voltage

Visit <u>www.electronicsbeliever.com</u> for more interesting topics