Transformer saturation waveform

Quasi Resonant Flyback Transformer Saturation Analysis

One of the very important aspect to look at in dealing with quasi resonant flyback transformer is the saturation. A quasi-resonant flyback transformer is not actually a transformer that we usually know. A transformer will transfer energy from the primary to the secondary at real time. However, the flyback converter will store energy on the primary and then transfer that energy to the secondary somehow. This action makes a flyback transformer prone to saturation if not properly been designed.
Quasi Resonant Flyback Operation Mode

Quasi Resonant Flyback Operating Modes

Each of the quasi resonant flyback operating modes discussed above has its strength and weaknesses. It is up to the designer to which mode to select. In my personal experience, I already used both the DCM and TM operating modes. Basically, a quasi resonant flyback will operate in DCM at light load and approaches to TM at very heavy load. During the design stage, the designer will set the operating point in first valley switching for heavier loads for optimum performance.
Quasi Resonant Flyback Waveform

How Quasi Resonant Flyback Works – Detailed Operation

A quasi resonant flyback converter is a variant of flyback converter wherein it makes use of the parasitic elements to partially resemble a resonance action. According to dictionary, the word quasi could mean partly, partially, comparatively or relatively. So, a quasi-resonance means a partial resonance, not a total resonance. At light load, Quasi resonant flyback operation will be in DCM. However, it will come closer to the boundary or transition mode while in full load.