IGBT has two types of losses. One is conduction and the other one is switching. Conduction loss is due to the voltage drop between collector and emitter times the collector current. On the other hand, switching losses is due to the dynamic parameters of the IGBT. If you are looking for an explanation on how to derive IGBT power losses,
READElectronics Believer
How to Derive LLC Converter AC Circuit
If you are asking how to derive LLC converter AC circuit, this article is perfect for you. The derivation is based on the first harmonic approximation (FHA). FHA is popular method in deriving AC circuit like those of an LLC which only considering the fundamental signal of a square wave. In this article I will give you some insights in
READHow to Design Over Temperature Protection Circuit
Over temperature protection circuit design is not complicated as you may think. It could be done by using a thermistor and other discrete devices. If you have question on how to design over temperature protection circuit or planning to make one, this article is for you, so keep reading. Key Definitions Used on How to Design Over Temperature Protection Circuit
READWhat are the Common Uses of a P-Channel MOSFET
P-Channel MOSFET is not popularly known compared to the N-Channel variant. Others said it is because difficult to deal with while others are saying it is not supply abundant and there are others saying that it is only limited to few applications. In this article, I will concentrate to the last reason, about applications. So, stay with me as I
READHow to Calculate MOSFET Power Dissipation
MOSFET power dissipation is the sum of the conduction loss and the switching losses. These power losses are very different from each other. Conduction loss is the static loss wherein the main contributor is the drain to source on-state resistance of the MOSFET as well as the drain current. While switching losses are dynamic losses that are dependent on the
READHow to Compute MOSFET Conduction Loss
MOSFET could be used as a switch or amplifier. Regardless of the application, there is a conduction loss. Let’s explore what is the meaning of conduction loss and how to compute MOSFET conduction loss. Conduction loss is the main contributor to MOSFET power dissipation when operating in a non-switching application. Even in switching applications, conduction loss is still very significant
READHow to Get MOSFET Correct RDSon Value
How to get MOSFET correct RDSon value is the pre-requisite to compute the MOSFET conduction loss or static power dissipation. RDSon is the drain to source on-state resistance of the MOSFET. The term “correct” is relative to the target result. Supposing the target is to compute the maximum power dissipation, then the correct RDSon value must be the worst-case value.
READHow to Compute MOSFET Switching Losses
There are two types of losses in MOSFET. One is conduction loss and the other one is switching loss. Conduction loss is explained in detailed here. Switching loss is not as easy as computing the conduction loss. There are many parameters to consider. You need to understand these parameters to select the correct values. However, you don’t need any more
READHow to Determine the Correct MOSFET VGS Threshold
MOSFET will not work if the gate to source voltage is not satisfied. VGS threshold is one of the specifications in the datasheet. However, it needs little understanding on how to determine the right VGS threshold. This article will discuss how to determine the correct MOSFET VGS threshold. How to Determine the Correct MOSFET VGS Threshold from the Datasheet To
READHow to Select a MOSFET for Power Electronics
These are the important things to consider on how to select a MOSFET for power electronics. These parameters when considered during the development stage, you can ensure a product with a very high reliability. 17 Key Items to Consider on How to Select a MOSFET for Power Electronics 1. Gate to Source Threshold Voltage (VGSth) Let us start this tutorial
READ