When you already heard about Optocoupler devices, you may be heard also about CTR. CTR stands for current transfer ratio. In bipolar junction transistor this is the so called current gain or simply beta. It is the ratio of the collector to forward current of an Optocoupler. In circuit design involving optocoupler, you may be dealing with the device CTR
READCategory: Electronics
Optocoupler Operation as Switch Tutorials with Design Sample
The optocoupler operation as switch is similar on how to configure BJT as switch. For a BJT to operate as switch it must be set to function in saturation and cut-off. Optocoupler as well. However in BJT circuit the base current must be high enough to drive the transistor into saturation; but in Optocoupler it is the forward current. In
READHow to Determine Optocoupler Operation Saturation or Linear
There are several ways on how to determine Optocoupler operation. The old school method is to build an actual circuit and measure the collector-emitter voltage. If the reading is low enough (equal to the saturation voltage of the device) or ideally zero, the Optocoupler is operating at saturation. If the reading is higher than the specified saturation voltage but lower
READOptocoupler Circuit Design and Detailed Analysis
Actually, Optocoupler circuit design is not that difficult as some thought. It’s just like you are designing a BJT circuit. If a BJT has its beta or current gain, optocoupler has its CTR or current transfer ratio. Once you know what a CTR is and learn how to use it, then Optocoupler circuit design is that easy. Current transfer ratio
READHow to Bias Optocoupler: The Complete Course
How to bias optocoupler is even simpler than bipolar junction transistors. However such device is not well discussed in the universities making people believe that it is a difficult device to deal with. Here I will reveal the methods and techniques on how to bias optocoupler. Before jumping to the main topic on how to bias optocoupler, let me touch some
READHow Linear Regulator Provides Output Regulation
In power supply the term voltage regulation is often mentioned and this is a very important thing actually. Nobody will buy a power supply with an output that has a voltage swing of 10% or even higher. Imagine for a 12V output the voltage can go as high as 13.2V and as low as 10.8V. This is ridiculous. In today’s
READFixed Bias Configuration with a Divider Resistor in the Base Complete Analysis
This article will uncover the fixed bias configuration with a divider resistor complete analysis. Actually this is another variation of a fixed bias circuit as shown in Figure 87. The only difference of this circuit is the addition of a resistor RB2 as shown in the figure. At application wherein the base is not tied up with the supply , when
READComplete Analysis of a Fixed Bias Circuit using NPN Transistor
This article will uncover the complete analysis of a fixed bias circuit. Figure 73 below shows a simple common emitter configuration. It has a base resistor RB, collector resistor RC but no emitter resistor. In general, this biasing technique is called as non-emitter stabilized bias because there is no emitter resistor. By some, this is also called as the fixed bias.
READHow to Know if MOSFET is Defective
Below are the guides on how to know if MOSFET is defective. These are the most common techniques that can be used to check if MOSFET is defective. Step #1 How to Know if MOSFET is Defective – Diode Check The first thing we will try on how to know if MOSFET is defective is to check the diode drop.
READProtecting Devices from ESD Damage
In electronics industry, protecting devices from ESD damage is a must. Electrostatic discharge or simply ESD is a very high voltage spike that can easily damage small signal components such as integrated circuits and low power semiconductors. A common ESD is caused by human body touching to electronic devices. Charges are accumulating inside human body and then when any part
READ